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ASYMPTOTIC THEORY FOR NONPARAMETRIC CONFIDENCE INTERVALS

Peter W. Glymn

1. Introduction
The problem of assigning nonparametric confidence intervals has
recently been the focus of renewed attention. One impetus has been .
the development of the "bootstrap™ method by EFRON (1979) as a general
nonparametric statistical tool. BICKEL and FREEDMAN (1981), as well
. as SINGH (1981), have shown that the bootstrap's distributional
approximation is asymptotically valid in a wide variety of circum~-
stances, while EFRON (1981) has studied, in particular, the boot-
strap's viability for setting confidence intewain. The recognitiop

that computing power is increasingly available has allowed statisti-

cians to consider confidence interval methods, such as the bootstrap,
that are computationally more complex Sut statistically better behaved i
than Ptevious techniques. The pivotal transformation of JOHNSON
(1978) is another such procedure.

Nonparametric confidence interval methodology has also attracted

considerable study in the Monte Csarlo simulation literature; see CRANE

and LEMOINE (1977), FISHMAN (1978), and LAW and KELTON (1982), for
example. The idea is to assign confidence intervals to point
estimators obtained from a simulation output sequence, in order to

give the simulator an assessment of the estimates' variability,

The simulation applications mentioned above dictate that we

; analyze the coufidence interval problem for ratio estimators. To be

el




precise, we shall consider the problem of estimating r = l!nI!‘tll
from a sequence of independent and identically distributed ({.1.d.)
random vectors (r.v.'s) {(Y ,¢ ); n > 1}, vhere !(|tn| + 'tnp Ce»
and hn" 0. Of course, the classical nonparsmetric situation is
captured as a special case, by setting <, = l.

The organization of this chapter is as follows. In Section 2, we
show that ratio estimators arise naturally in the context of the simu-
lation and/or statistical analysis of ergodic qmt\itiu associsted
with regenerative stochastic processes. Section 3 discusses the basic
central limit theorem (cx.'r)' on vhich all the confidence interval
methods to be considered in this chapter will be baqad. hmj:otic
error analysis of these techniques requires certun‘tools fro; ﬁhe
theory of Edgeworth expansions. In Section 4, resulte of
BEATTACHARAYA and GHOSH (1978) and GOTZE and HIPP (1978) are extended
to accomodate the generalizations required by the ratio estimator
problem.

In Section 5, we obtain a rigorous Edgeworth expansion for the
ratio estimator pivot statistic. This extends the work of CHUNG
(1946) from the classical case to the ratio problem (the formulas
there contain some errors, however; see WALLACE (1958), p. 642). This
enables us, in Section 6, to analyzs the error asymptotics of the
ratio pivot confidence interval, as well as two related intervals. In
particular, we are able to precisaly identify the effect of the
Student t-correction (i.e., using Student t-quantiles rather than

normal quantiles in the limit approximstion) on coverage.




it Y

In Section 7, we extend Johnson's pivotal transformation to ratio
pivots, and show that it corrects for the asymmetry effects of order
n~1/2 (n is the sample size) that occur in the standard pivot.
Section 8 presents a second-order pivotal transformation which
corrects coverage error in the standard pivot to order n~l. It
turns out that this second-order pivot is the nonparametric analogue
of a transformation suggested by HOTELLING and FRANKEL (1938) to
“normalize” Stud;nt t-variates. Section 9 discusses computational
issues and displayl‘relult; of Monte Carlo sampling experiments in
which the coverage characteristics of the pivotal transformations were

compared with those of the untransformed pivot.

2. Some Applicatioﬁl of Ratio Estimator Confidence Intervals

The possibility of extending confidence interval methodology from
the classical framework to the ratio estimator context has been
previously studied in the statistical literature. For example, ROY
and POTTHOFF (1958) discuss this problem in the case where (Yn,tn)
has a bivariate normal distribution. Their motivation stemmed from
applications in which a comparison of EY, and Et,, in terms of
their ratio, is deiired. For instance, in evaluating the effect of a
treatment, the ratio of the mean of the treated population to the mean
of the untreated population is of interest.

More recently, this problem has sttracted considerable attention
in the simulation community. Consider a measurable regenerative

stochastic process {Xy; t > 0} (see SMITH (1955) for a complete
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discussion). Then, there exist random times Tl < Tz € eee with
T,*= _such that the vectors {(!k(f), 1k); k> 1} are i.i.d., where

Tt

Y (£) = £ £(X, )ds
k

T " T ™

for any suitably measurable real-valued function f£. It can be showmn

(see [13]) that 1if E(Yn(lfl) + %) <=, then

gt f(x')da/: + ©(f) = EY (£)/Ex) a.s.
Hence, developunent of confidence intervals for ergodic quantities such
as r(f), in the context of regenerative processes, leads naturally to
the sfudy of ratio estimators. For a complete discussion of the
sisulation issues related to regenerative ratin estimates, we refer
the reader to IGLEHART (1978), and Chapter 6 of RUBINSTEIN (1981).
Of course, it is clear that the regenerative approach is equally

‘applicable to the nonparametric analysis of statistical data modelled

as a regenerative stochastic process (for example, finite state Markov

chains). Accession For
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3. Confidence Intervals for Ratio Estimators

For the remainder of this chapter, we assume that E(l!n'd-ltn')(-,
!‘:n #0, and 0 < a2<zl) ¢ », vhere zk - !k - Ty Also, without
loss of generality, we assume that B‘:n > 0 (otherwise, we pass to
(-!n. -tn)). For a generic sequence {"1; 1>1) of i.i.d. r.v's,

1/2

we shall use the notation ;'k = Z:—l n,/k, and ;'k =k (r-)k-lnl).

The r.v.'s

Y /<

-
¥ n

I -
{rnatO)

I« 2
V 8 e Y"rf
=] i ni .

1 /2 (rn-r) -
- . 172 n
{vn>0 »% n#O} A
(we interpret a product involving an indicator to be zero if the
indicator is zero) play an important role in ratio estimator
confidence intervals. To be precise, it is not difficult to show that

Tp* © a.8. and that

x
(3.1) Pn(x) H l’{l:u <x} + [ o(u)du = &(x)

-
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U2 n(=u?/2). The CLT (3.1) proves that

where ¢(u) = (2x)
(L), R (p)] (0 <p <) 1s an approximate 100 (1-a)X confidence
interval for r, where

L(p) =1 =v (pti=a) T _ = v (I _
n n (20} o {70}

(3.2 Rn(p) =r - vn(p) I_ - vn(p+1-¢) I _

{= n>°} {~ n(O}

vo(® = =p) vM2al2 3y

and z(p) = #‘l(p). In order to study the error asymptotics of the

above intervals, we introduce the error descriptors

e(p) = B(r < 1 (D)) - (ap)
(3.3) es(p) = M(r 2 R (P} - p
e, (P) = P{L (p) <r <R (P}~ (1=a) .

The term e,(p) measures the coverage probability error in the
interval [L n(P)’ R :;(’))’ vhereas the terus c:(p), e:(p) provide the
one-sided coverage errors. The one-sided errors will assist us in
evaluating the degree to which the sbove nonparametric confidence
interval captures the asymmetry which is present in parametric

confidence intervals (see [9] for s discussion of this point).
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In analogy with the classical nonparametric case, two other
intervals are natural to consider. Let t: be the pivot obtained
from t, by replacing v ﬁith v:, where v: = ((n—l)/n)vn.
Intervals [L:(p), R;(p)], with errors eﬁ(p)*. c:(p)*, and ¢ (p)*,
are defined analogously to (3.2) and (3.3).

A second alternative is to use the Student t-distribution with k
degrees of freedom. Let zy(p) be the p'th quantile of such a
distribution. Then, zy(p) » z(p) as k + » (PEISER (1943)), and
thus, in light of the parametric theory for the bivariate cormal case,
it is of interest to consider the intervals, [L&(p), R;(p)], with
errors c:(p)', c:(p)', and en(p)'. constructed by substituting
zn-l(p) for z(p) in vn(p). ’

Before concluding this section, we observe that if E|1n|’+2 < e

o —r

for s > 0, Chebyshev's inequality implies that

(3.4) P(T, < 0} < B(3)%/(a!/? Ex )" ’
1

where x iIs an even integer lying in the interval (s, s+2]. It is

easily verified algebraically that B(;n)r remaing bounded, so

Pz, < 0} = o(a™*?). Then,

(305) t:(P) = -Gn('(p'.-l-a)) + O(n../z)

,:(p) - G‘(:(p)) + o(n-'lz)

T e e A et A 4 e e s o L

e, (P = G (2(ptl-a)) - G (2(p)) + o(a™*?)




where Gn(x) - Fn(x) - &(x), provided !|1n|.+z < =, Analogous
expressions hold for the errors for the other confidence intervals.
Thus, the discussion of confidence interval error leads to study of

agymptotic expansions for Gp(x).

4. ggggworth Expansions for Smooth Statistics

BHATTACHARAYA and GHOSH (1978) have recently, shown that the
“delta method” for deriving Edgeworth expansions is rigorously correct
for a wide class of statistics. To be precise, suppose that
{Va: n > 0} {s a sequence of 1.i.d. wdimensional r.v.'s, and let

fl’ eoey fk be real-valued Borel measurable functions on R™. Put

01 - (fl(vi)' ceey fk(vi))
B = EO,
and let !0, Hl, seey n. be real~valued functions on RF such that

H, 1is coatinuocusly differentiable of order s+2~1i on a neighborhood

b
of p. The objective is to establish an asymptotic expansion for the

distribution of

. -
(8.1) A= n“z(kzo *2E (@) - B (Wle, ) + 8

where

DR Lyt




-k/2 -8/2
a = n ‘k,s + o(n )
k=1
and
s+l
¢ =1+ a Mo oD/
n »8
k=2
are sequences of deterministic comstants. The form of n-llz A

n
outside a neighborhood of p can be taken as an arbitrary real-valued

ueasurable function of ﬁn (the constants a.c, add a flexibility
which will be necessary later; see (7.2) and (8.3), for example).

We shall henceforth assume, in our study of a,, that the
covariance matrix | associated with U is non-singular. This can
be done, without loss of generality, by replacing 1, fl’ seey fk by
a maximal (in terms of number of elements) collection 1, fil' eees fip
of functions linearly independent as elements of the Lzl space of
r.v.'s (see [1], p. 442, for details).

The “delta method”™ begins by expanding Hj(u) to (s+l-1)
terms, as a Taylor series about u = p. This yields a polynomial
Hg (u) of degree (s+l-1) and gives rise to a differential

approximation Ag n Oof A as follows:

' - -
(4.2) "s,n © nl/Z(kgo n klz[ﬂ!.k(un) - nﬁ.k(u)lcn) ta .

This can be re-written in the foram

- s -) ~ -
(4.3) A (B) = § o¥/2 By (0 + oln s/2,

. memme e s
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vhere P_ .k is a polynomial of degree k+l and o(n '“) 1s
1 ]

independent of ‘-ln. Assuming that Ul has sufficiently many finite

moments, the j'th cumulant of & has the form
j,n s,n

T _-k/2 s/2

(4.4) Ky .= ] n b, . + o )
Jin kﬂ j’k

Xy .n + o(n ) .

Note that x j,0 depends exclusively on moments of order less ti s
|

equal to s+l. Let 62 be the variance of P s O(Un)’ wvhich we . _.

henceforth assume to be positive and finite. A reasonable approxima-

tion to the characteristic function of Ag n (and hence An) is
»

therefore

842 j .
(4.5)  exp(-a’t?/e) exp(1 + 321 U Gy - by, 00 -

Expanding the second exponential yields the expression

s
(4.6) exp(-a?t/2) 1+ ] n"T/2 x (16)] + o(a™*?)
) r=1

= 4, aU10) + o(a™*'?)

where Xis oeoy X are polynouials not depending on n. The Fourier

s
transform :b. a corresponds to the signed measure
1]

10

- RN ERAe. v S bR IR i s st A R L S PN TN
.

——-‘m...j




8
.7 ¢, (Mdv = [1+ 1 /2 1 (-d/av) ] v/ o) av/a
‘ ’ =

which is the formal Edgeworth expansion of the distribution of aj,.

(4.8) THEOREM 1) Suppose that EiU,l3 < @, Then,

x -1/2
(4.9) P{An_<_ x} = [ ¢(v/c) dv/o + o(n )

-

where o(n‘llz) is wnifora in x.

i1) Suppose that Bltluls".z < », and that Ul 4+ cee + U,!. has a

non—zero Lebesgue density component (in BK) for some 1. Then,

s/2

(4.10) P{An € B}l = [ qp' l‘(v)dv + o(n %)
B t

wheré o(n-'lz) 18 uniform over all Borel sets B. The function

¢

s n S22 be calculated via the “delta method” (4.2) through (4.7).

Although the proof given in [1l] restricts its attention to the
cage where ap =0, ¢y =1, and H =0 for k > 1, the
argument readily extends to the more general situation considered
here, the only complication being additional notatiomal complexity.

In some related work, CHIBISOV (1972) proved Theorem 4.8 (ii) in
the case where T, was of the polynomial form (4.3) (no identifica-
tion of ¢g n as the expansion obtained via the "delta method™ was
made, however). An extension to the general non-polynomial case was

effected via the following "perturbation” theorem (see [4], p. 629).

11




(4.11) THEOREM. Suppose that A’ = A + o (st1)/2

satisfies the assumptions of Theorem 4.8(ii) and P{lxnl > nl
- o(nralz

1 5 where A
1,

) for some sequence p‘+o. Then,

® x "3/2
P(a; < x} = L ¥y o(")AY + o(a ™)

where o(n?‘/z) is uniform in =x.

It 1s clear that the ¢g,n Of Theorem 4.1l must be that
obtained via the “"delta method”.

We remark that the density assumption on the Uj's in Theorem
4.8(1%) follows if V4 has a LeBesgue density component which is
positive on an open set where 1, fl' ceey fk are linearly indepen—-
dent as continuous functions (see Lemma 2.2, [1]). Also, we note that
the moment conditions in Theorem 4.8 are norm independent, due to the
fact that all norms on finite~dimensional spaces are equivalent.

Because of the potentially large number of derivatives required
in calculating the expansions Hg y(u), it is convenient to consider

a modification of the "delta method™. Towards this end, let 6(j;u)

be polynomials of dégree p(s+l), and set

]
- 372 o4, ©
8, 120 2 e(g; 0) .
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(4.12) PROPOSITION. Suppose thst . ~ A:’ o~ 6, satisfies
»
n"z R 0 in probability (i.e., R = op(n—',z)). Then, 1if

(st+l)p P o
Hl!nl { ®, we have K A.’n xen + ofn )
Proof. The remainder R, can be written in the form

a
~§/2 -
R_= ] o2 g3 0)
v 420 n
where R(j;u) are polynomials in u of degree p(s+i). We now show
that R(j;u) vanishes for j < s. Starting with § = 0, observe that

R(0; T ) => R(0; N)

(==> denotes weak convergence), where N 1is a multivariate normal
r.v. with non-singular covariance matrix I. Evidently, since

s/2 - - Ty - .

n R op(l) and kn R(O; Un) op(l), it must be that R(O;N)
is degenerate at 0. On the other hand, if R(O;u) depends non-
trivially ocn uj; (say), then the Jacobian of the transformation

u- (ul, ceey U1 R(O;u), G cter ""k) is non-singular, and thus
it follows that R(O;N) has a Lebesgue density. This contradiction
forces R(O;u) to vanish identically. Repeating the argument s

more times proves that

a

-j/2 ~
R = n R(j; U ) .
n j-§+1 n

13




Under the moment conditions given here, ER(j; 53 + ER(J;N) and
consequently Exn - o(n-'lz). proving our result. 1

Our final goal in this section is to show that the Edgeworth
expansion (4.5) remains valid, in a certain sense, when the density

assumption on the distribution of U 4s dropped. Let C:(!) be the

class of all bounded infinitely differentiable functions and take

CA(R) = {f : D°f e Cy(R), for all n} (D = d/dx). The class C,(R)

includes the trigonometric functions sin(tx), cos(tx), as well as the
Schwartz class S (see BHATTACHARAYA and RAO (1976), p. 257). We
£irst need the following proposition.

» (4.13) PROPOSITION. (1) Lat f ¢ Co(R), and suppose a is a

mltiindex (i.e., & noo—negative integral vector) with |¢| = oy

A e em

< w2, Thes, if BU ™2 ¢ o, thare exists s miltivariate Edgevorth
expansion Iy n of the distribution U such that

@.16) BT £peT)) = [ u £pew) £,  (wdu + o(a™?)

bolds, for any wector p.

(14) 1f nn_l'*z ¢ @, then the cheuge-of-varisbles formula §

e

W15) [ ay (@) &, ()ds = [ £(3) o, )y + ota ™) ‘

holds for all bounded msasurable f.

14




a

Proof. (i) We use Theorem 3.6 of [14], and observe that boundedness

of the derivatives of f implies that

P(®s) = oC1ur®?)

(DB = ngl nﬁk where D, = 3/3x,) for all multiindices B with

] b |
|p| £ m. This is sufficient for (i), in the presence of Blllnll".2 { e,

(11) Lemma 2.1 of [1] proves that (4.15) holds uniformly over
all indicator functions f. For an arbitrary bounded £, approximate

f by a finite linear combination of indicators £j 5 such that

|gx) - £ ¢y o £y (| <27 for all x .

Then, letting ¢(f) bde the difference between the two integrals in
(4.15), and using the Hahn decomposition on the signed measure ¢(-),

shows that

6| <270 2,000 [du + [ o ) [dy) + [uay o acty )
< o™ + nup'f(x)l ) o(n-'lz) s

where the uniformity over indicators is used in the final step. |

15
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Our next theoremn shows that Theorem 4.8 continues to hold, im
expectation, when the density assumption on U 1s deleted. We impose
rather strong assumptions on U, and the class of test functions f

allowed,. in order to simplify the exposition.

(4.16) THEOREM. Suppose that U, has finite woments of all

orders. Then, for any s,

(4.17) RE(a) = [ £(3) ¢, ,()dy + ota /)

for all f ¢ c:(l). The function ¢, =~ can be identified through the
»
“delta method.” )

{

3
Proof. First, observe that for any ¢ > 0, there exists K > 0 such i
that

(4.18) PUT 1 > €} < PUITS > K ) .

The probability om the right-hand side of (4.18) is o(n"8/2) (gee

Corollary 17.12 of {2]); and hence

EE(T ) = E(E(T )5 10 -ut < e} + 0% .

Choose £ sufficiently swall that D("z-k) lk(u) is continuous on
an c¢-neighborhood of p fur all k. Expanding A, on (Il-!n-ul < ¢}

yields

16
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s - -
(0190 ag = ag o+ 27D ] e G E g /(es2n

where V7 = (Dl' veey Dk) and Ink’n—ul < e. Note that nk(“k,n) are
bounded r.v.'s in (4.19).

Thus, we can write f('l'n) on {lﬁn-pl e} as

T S 3k (pk .
Bn) = T (g = B (T)F (070 (B, (0 ))/k!

+ (g = B, (@ ™ e)(n /s

which evidently can be re-written as

2
- -le o . .
£(a)) jzo n rj'n(un. ™%, nb n) -

For 3 <s, I‘j o bhas the form ﬁ’ g(p-ﬁ ) (g ¢ c:(n)) whereas for
- » n n
J > s, Ty,n 1s the product of functions of this form with bounded

functions. Thus, for J <s,

BTy o5 10,1 < e}
- ary g+ 0™ - [ 1y (0 g, (et o™

the first equality by uniform integrability of (4 p}, the second

by Proposition 4.13(1). A similar argument for j§ > s shows that

17
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~3/2 . 1T - a(a~8/2
!{_1-24-1 n rj.n, 10 -pt < €} o{n )
and hence
8
Bt = [ 1 232 p, ) g, (s + ota™ )

= Ay o) 8y (w)du + o(a~2)

Applying Proposition 4.13(ii) completes the proof of (4.17). The
identification of q;,'n(y) as that derived from the "delta method”

follows from a proof identical to that found on pages 445-6 of [1]. |
We remark that an immediate consequence of Theorem 4.16 is that,
under the assumptions stated, the characteristic function of 4,

can be expanded as

E exp(1t A ) = &.'n(m + o(n"’_ 2y |

5. Edgeworth Expansions for Ratio Estimator Pivots

As Section 4 illustrates, the key to obtaining Edgeworth expan-
sions is the calculation of cumulants (see (4.4)) of the differential
approximation Ag n. The required moments will be derived from
Proposition 4.12. In this section, we will calculate Edgeworth

'S -
expansions for € and tn to order n 1. This represents a

18
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different approach from that of GEARY (1947) and GAYEN (1949), who
formally expanded the distribution of the pivot t, (for the
classical case where T, = 1) 1in Charlier—type series.

We start by observing that the pivotal quantities tn and t::
are invarisut to the transformation “1"1) + (a¥y, az,) = (Yi,ti)
for a # 0. In particular, by taking a = 1/o(Z), we can assume

throughout our calculations, via a passage to (!i. '), that

T
1
0(2) = 1. However, in stating our final conclusions, dependence on
o(2) will be made explicit.
*
Our first order of business is to expand tn and ¢t a in

differential-type approximations € n

nd e v

a tz’n-o Set k - (!k"‘k)
2

and let fl(v) -V fz(v) =V fs(v) -V f,‘(v) il 2\ 2% fs(v) - vg.

Observe that rp-r = in/;n and that I(y 20,340} is identically 1

on a neighborhood of p. Thus, )

_ LI _1,* 3 % .2 -1
(5.1) t, =2 (1 =5 (v =) +3 (v -1)" + op(n ))
where
" - in n YT, in n 1::
(5.2) vol=% 2= ] == +=( ) | =<
T, 171 T i=1

and W, = Zi-l. Expanding U;n in a Taylor series about 1/Et, we

obtain

19
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(5.3) ' iu/%'n - in/ze - (in$n>/n1/ 2 gyl s op(n'z)

-k/2

where we use Op(n ) to represent a sequence of r.v.'s Kn such

that no</2 K, remains bounded in probability (see p. 8 of SERFLING

(1980)). Also,

a n

2
(5.4) 2 Y,ts,/a - (r_+r) 1, /n
121 1°1 n 1.21 i
3 ) 1 2
-2 2,t,/a - (2 /1) <;/n .
{=1 11 a'n 1=1 1
Relations (5.1) through (5.4) imply that
(5.5) t: =z {l- anIanlz + afn/n”z ' . '
- Z.Q./n+ 30 -2¢2 )2/tn} + 0_(a”}) ;
n'n n n P

where

Q=2 11/31: - 2ziril(nsr) + 216

end a = EZ27/(c(Z)Et) and & = E-:z/(h)z. In order to evaluate the

cumulants required, some moment identities are needed.

20




(5.6) THEOREM (i) Lat (A,; n > 0} be a sequence of 1.i.d. r.v's
with EA* <= for all k. Then,

23 -1/2 23

(a) un =q ul

-4 2.2 -1/2
() EAt = amD? + a2 gt - 2mi?y?
() EA> 1’Z(I:Al)(nl)sw(n )

@ =S -5+ oa"12)

{11) Suppose that {(An,ln); n > 1} 1s s sequence of i.i.d.

k k
T.v.'s with nn<-. !l-<- for all k. Then,

1/2

o migs, = i,

() EASS, = XEd 3 )(xad) + o(a /%)
245 llz

®) 4 - ) w3, + eV 2idi) 2l + oa™)

21




W s - XEo)(xE2)? + 12(:2151)2 B + o(a-1/2)

(4) =B - 15(:2131) (xif)z + o V2
(x) EAB - o(n V2 1f k) 1s odd .

Proof. For (1), observe that exchangeability of the sequence

{Aq: n > 0} provides a recursion in k, namely
n K+l n n K
E Al = B A' Al
(3, 0 2L ) (] )
(A ¢ E A%
= nE '
n 1=} i
o 15 s (T A
= ¥ 3= 3

vhere A'1 - Ai-nl. Solving the recursion with initial condition
!A;l = 0 proves (i). For (11), apply (1) to An(s,t) -8 + tB .
Roth sides of equations (a) through (e) are then polynomials in

(s,t). Identifying coefficients ylelds results (f) through (k). I
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Now, let B = E23/07(2)), A = (EZ}/a"(2)) - 3, and
Y= Ezf:tll(dz(zl)hl). Then,
EZ, W, = § E22 W, = a2
1% , 1%
(5.7)

B2, 61 -5+ 2a%-2y , zwf - a2

In view of Proposition 4.12, (5.5) through (5.7) provide the

asymptotic expansion

/2

Bty o = (@8/2a 2 4 0™

Similar reasoning on the higher moments proves that

ECty )% = 1+ (6a® + 6y + 287 - 35 - 10ap)n" + oa™D)
»

E(e) n)3 - (9 - 78/2)0°Y2 + o2}

. 4 2
B, )" =3+ (120 a

.

+ o(u_l) .

The relevant expansions for t, may be easily obtained by

* -
using the relation ¢t a™t n(1 - 1/2n + 0(n 2)). Consequently,
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¥

Btz,n - Btz’n R
2 * 2 -1

Btz’ - B(tZ,n) - ’
3 * .3

' Etz,n - B(tz,n) ’
and

4 4 -1

Etz,n - E(tz,n) 6n ~ ,

up to terms of order o(n~l).

Note that in the classical case where <t5 = 1, we have a = 0
and y = § = 1. The moment formulas for t,, when appropriately
simplified, are then in agreement with those found in [11] and [12].
It should also be noted that in the classical case, the approximate
skewness E(tz’n)3 ((E(t;’n)3) of :n(::) s -78/2. This verifies
the empirical obseryation that positive skewness in the distribution

*
of Z, leads to negative skewness in the pivots tn and t_ (see

i n

SOPHISTER (1928), and NEYMAN and PEARSON (1928)).

The appropriate cumulants Pt 1,0 of tn are given by
(5.8) X, = § 2o ®2y 4o
) a5 3.k

where

b, , =a ~ B/2

1,1
by o =1
2 2
by o = by + Sa° + 7p°/4 - 35 - 9ap - 1
»
by g = 6a - 28
2 2
by g =2y +60a" +126° -128-60af~21-6
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*
and all other bj,k are zero. For tn’ the bj,k of the

~h *
corresponding cumulants Kj,n satisfy bj,k - bj,k’ excepting that

*

The following distribution function Y, n(x) is obtained from
»
Pt in the same way as passage was made from (4.4) to (4.7):

jn

(5.9) Yz’n(x) = o(x) - bl,l «1;(7:)/:11/2

- (b2,2 + bf'l)x ¢(x)/2n

/2

+

b3,1(1'x2) ¢(x)/6n1
= (by g ¥ 4by 4 by ) (x3-3%) 6(x)/24n

3

- b§ 1(xS - 102> + 15%) #(x)/72n

. L]
Also, let Yz n(x) be the function obtained from (5.9) by

®
substituting bj,k in place of bj,k'

(5.10) THEOREM (1) If n(r: +15) <o, then
-1/2

P{t-_<_ x} = 3(x) + O(n )

where 0(n~1/2) 1s wniform in =x.
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(11) Suppose that K( Irnl" + |~:n|") < ® for all k. Then,

EE(e) = [ £(3) ¥, (dy) + o(a ')

for all f ¢ Cy(R).

(111) Suppose B(!: +t:) { e, and that (!1, -:1) has a
distribution with a Lebesgue dens’ y component which is positive on

some open set in the plane. Then,
-1
P{tn € B) = { yz’n(dy) + o(n 7)
where o(n~l) is uniform over all Borel sets B.

(iv) Suppose 1:n'==.1. Then, if !!:<-,and1fthe

distribution of Y, has a Lebesgue density component which is
positive on some interval, the amalogue of ({11) above holds. The

function Y2 , is obtained from (5.9) by formal substitution.

&
(v) BResults (i) to (iv) are valid for l:n under the same

)
assumptions as for tn’ provided that !2 a is substituted in place
?

of Y2 n.

Proof. The functions f£), ..., f5, being distinct polynomials,

are linearly independent so Theorems 4.8 and 4,16 can be applied,
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ylelding (1) to (iii). Part (iv) 1s handled as a special case, by
setting v, - Yi’ and fl(v) =v, fz(v) - vz, and applying the same

argument as for ({ii). |

As previously mentioned, a particularly important application of
ratio estimation lies in the domain of ergodic analysis of
regenerative stochastic processes. It frequently occurs that the
regenerative sequence {(Yi, T i); 1 > 1} constructed is such that Y:l.
has a Lebesgue density component, whereas <t; is a lattice r.v.

For example, this is the case that arises when (X¢; t > 0} is a
continuous time process constructed from a discrete time regenerative

} via the formula

1]
process (xn

o«
X =7 X1 (t) .
t el B {n<s<n+l}
Our next resulf addresses this class of processes.

(5.11) THEOREM. Suppose that !(!:-01:) { ® and that zi has a
distribution with a Lebesgue density component which is positive on an

interval. Then,

Be, <x} =¥y (x) + o(a /D)

B(t, < x} = Y, L0+ o(a”1/2)
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uniforaly in x, where ¥, -(x) is obtained from Y, n(x) by
t 1 4
deleting terms with coafficient '

Proof. The pivot t, can be expanded as

vz a2l

p nn n 1
(5.12) t, - I{vn>°';n‘°}(zn - Zm +-nﬂi) (1 + O(;-)) + xnlﬁn

where 0(1/n) 1is deterministic and

ol 3
Xy ° I{vn>0,;n¢0}(un'v) H(Eu)

and H corresponds to t, via (i.l). Now, observe that Theorem

4.8(11), with 8 = 1, is applicable to the first term in (5.12).

Select ¢ small enough so that (DTH)(u) {s bounded for

fupl < € for all multiindices < with [t| = 3. Let

1/2

P ™ K(fn n/n) for K to be chosen later. Then,

RO L

1/2

s P{lxnl > CI }

<Pt > o, 0l 4T o < o) + BT w1 > )

< P{ixd > ek tnn) + P01 > K mu) .

Choose K sufficiently small so that (4.18) applies. Thus,
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Blaxgt > oy 0l/%) = oa™

and hence Theorem 4.11 implies the result for ¢t a® Precisely the same

*
argument works for ta !

6. Applications to Ratio Estimator Confidence Interval Estimation

In this section, we apply the Edgeworth expansions of Section 5 to

analysis of nonparametric ratio estimator confidence intervals.

(6.1) THEOREM (i) Suppose !(!: + 1:) € @, Then, e:(p), e:(p). and

€ (p) ave all o(n-uz), wmiforuly in p.

(11) Under the assumptions of Theorem 5.11,
e:(p) =p+l-a- 'l,n('(l’ﬂ.“)) + O(n.llz)
c:(p) - !l,n(’(’” -p+ o(n-llz)

ea(®) = 7, (e(pH-a)) - ¥, (x(p)) - (1-a) + ola /%)

uniformly in p.
(111) Under either assumptions (iii) or (iv) of Theorea 5.10,

) =p+1-a-¥, (x(pH-0) + o)
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€(») = ¥, (x(p)) - p +o(a”)

QP =Y, (x(pt1-a)) - ¥, (a(p)) - (1-0) + o(a ")

uniformly in p.

(iv) Results (1) to (ii1) are valid for ¢:(p)*, ¢:(p)*, and
¢, (P)* under the same sssumptions as for the t, errors, provided
v

§,n 18 subetituted in place of ¥, ..
Proof. The results follow immediately from (3.5), and Theorems 5.10
and 5.11. }

These expreuiéns show that under reasonable assumptions tl;ae

1/2) for p # a/2, whereas

coverage errors e n(p), en(p)*- are O(n
for p = a/2, the coverage errors are O(n-l). Thus, using confidence
intervals based on p = ¢/2 leads to intervals that are asymptotical-
ly optimal in the sense of having shortest possible length and most

accurate coverage rate. However, it is important to realize that the

one-sided coverage errors are o(n-]'/ 2

) for all p, including
P = /2. Hemce it must be that [L (a/2), R (a/2)] (similarly for
[L:(¢/2). l;(¢/2)l) achieves coverage error of O(n-l) via

cancellation of one-sided errors of order 0(n-l/ 2).

This suggests
that a "corrected interval”, in the sense of one-sided error, can be
obtained by shifting the interval slightly. This is in agreement with

psrametric confidence interval theory, where intervals tend to be
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asymmetric about the point estimate. We shall examine this question

further in Section 7.

The coverage errors cn(alz) and :n(a/Z)* are given by

en(a/2) = ~(b, , + B Dz #(x,)/n

3
°(b4,2 + 4b1’1 53’1) (x -3z ) Q(xa)/lzn

2 S 3
-b3’1(xa - IOxu + 15xa) ¢(xa)/36n

cn(alz)* = en(alz) -x ¢(xu)/n

where x, = z(1 - a/2). Recalling the definition of the bj,k" (see
(5.7)) we see that 'cn(¢/2) and en‘¢/2)* have a tendency to be
negative, particularly if the zi's are highly skewed (i.e., az is
large). This tendency for nonparametric confidence intervals to
undercover has been exhibited empirically; see IGLEHART (1975), for
example. The procedure of Section 8 will attempt to deal with this
coverage rate problem.

Note that the t, coverage error is always biased upwards from
that of t: by an amount z(l-a/2) ¢(z(l-a/2))/n. This is an
attractive property of tn’ in comparison to t:, in view of the
undercoverage mentioned above. The cost associated with using t,,
rather than t:, is that the t, interval is longer, asymptotically,
by an msount o(2) =(1-2/2)/((Ex) u>’/2). |
A similar analysis can be performed for the intervals [L;(aIZ),

R;(¢/2)]. PEISER (1943) showed that
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(6.2 z_ () = 2(p + (£2() + £(p))/én + o(a™H) .

Thus, using the uniformity in x of the expansion ¥2 p(x), we get

(6.3) e (a/n)! =¥, (2 (1-a/2)) = ¥, (2. (a/2)) = (1=a) + o))
= € (a/2) + (x4x,) o(x /20 + o(n™ )

where xy = z(1-a/2). Thus, the coverage rate for the interval

[L;(G/Z), R;(aIZ)] tends to be larger than that of ¢ , by an amount

(x:+x¢) Q(xa)IZn. For highly skewed populations, this gives intervals

based on Student t-quantiles an advantage over those based on' normal

quantiles. The use of Student t-quantiles comes at the cost of an

interval which i{s longer by an amount o(z)(xi+xa)/(!t) h3/2, however,
Note that for samples from populations with normal Y4 and

T, en(¢/2)' = o(n-l). as expected.

7. Johnson's Pivotal Transformation

In Section 6, it was shown that under reasonably general
assumptions, the one-sided coverage errnrs for t, and t: are of
order O(R-IIZ). These errors arise due to asymmetry effects related
to skewness ind ratio estimator bias. In a recent paper JOHNSON
(1978) cousidered, in the case where Ty F 1, a transformation of the
pivot t, derived on the basis of Cornish-FPisher expansions (see
CORNISH and FISHER (1937) for a discussion of these expansions).
Empirical evidence collected by Johnson indicated that the
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transformation led to intervals that reflected the "correct”™ degree of

asymmetry. We now investigate the pivotal transformation of Johnson,
using the mschinery developed in Section 4.

Consider the sequence
- -1/2 2 _~1/2
(7.1) ‘rn €+ en n + pn(tn) n

vhere 6 = O(ﬁ“,vn), Py ® p(!-J“.v“) and 6(e), p(e) are functions
analytic on a neighborhood of (s, o(z)). Let 0 = 6(u, 02(2)),

p = p(u, 02(2)), and observe t::t

5 y - us 2, -1/2 , -1
(7.2) T =2z + (a2 -WZ/2+0+0Z])n +n

vhere x, 1s 0p(1).

We now use Proposition 4.12, Theorem 5.6, and relation (5.7) to
obtain the cumulant expressions
€T, ) = (B2 4a+0+0) 0 /240
kp(T) ) = 1+ 0(™)
€y(Ty ) = (28 + 6a + 6) 5 /2 4 0ty .
Observe that by setting © = 8/6, p = §/3 - a, all three cumulants

sbove are reduced to O(n-l). This suggests setting O = pnls,

Pa -pn/3 - a, where
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n
3/2)

2
(7.3) Ba = Lv 0,5 #0) 121 (¥ -z, /(avy

s 1/2 -
, % * I{vn>0,;n¢0} 121 (’1 - tn'i) 1:1/(nvn 1n) *

*

* *
Let T be defined through (7.1) and (7.3), substituting t and v

for t, and vwp.

(7.4) THROREM (1) Suppose that l(l!n'k + 'tnlk) < e for all k.

L Then,

]

i EE(T,) = [ £y) a(pay + oa /D)

for all £ ¢ Co(B).

(11) 1 l(l!nf + |:n|9) < @, and 1f the density assumption of

& Theorem 5.11 holds, then

- P{T.Sx} -“X) + o(u-llz)

{

1 uniforaly in x.
g (111) Basults (1) and (11), under the assumptions stated, are
valid for r:.
‘.F: -

Proof. First, observe that yp (see (7.2)) is the remainder tera
from Taylor's theorea for rn. On the set {vn >0, ;n + 0}, o has

the form
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xg = (0,07 8 (£)/6

when nnggn) is bounded on {Iﬁn-pl < ¢}. Now, apply Theorems
4.8(41) and 4.16, as in the proof of Theorem 5.11, to obtain (ii).
For (i), write
Ef(T ) = E£(T') + Exy_ DE(n_)/n + o(n V/2)
n n Xn "

and argue as in the proof of Theorem 4.16. The proofs for T: can be

handled similarly. |

We remark that the moment assumptions in Theorem 7.4 follow from

must be expanded to include Y:tj with k+j = 3,

the fact that U 1

i
due to the presence of B, in T,.

For the classical case where Th 1, the transformed pivots Tn
and T: are precisely the statistics suggested by Johnson, up to a
tera which 1is Op(n-l). Note that Theorem 7.4 gives rigorous
substance to the statement that Tn(T:) "normalizes” tn(t:) in the
sense of creating a r.v. which is closer to a normal. This is not
surprising, in light of the fact that Johnson's calculations were
based on Cornish-Fisher expansions, which are “normalization” series
(see {30], p. 643).

Theorem 7.4 can be easily applied to coverage error asymptotics
to yield the following result: 1If (!n.c;) satisfies the
assumptions of Theorem 7.4(11i), then all the coverage errors

L

(one~sided as well as two-sided) for intervals based on Th or Tn
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are o(a~}/?) uniformly i{n the parameter p. Thus, the Johuson

pivotal transformation corrects for asymmetry effects.

8. A Second-Order Pivotal Transformation

As discussed in Section 6, nonparametric confidence intervals have
a tendency to undercover at small sample sizes. However, the analysis
of the symmetric intervals (L,(a/2), Ry(a/2)] showed that the
coverage error is basically determined by the term in o=l of the
asymptotic expansion of P{ty € x}. This suggests that any a:ténpt
to correct the coverage rate of the symmetric intervals [L,(a/2),
Bp(2/2)] must deal with higher order error terms than those
considered by the Johnson pivotal transformation.

Consider tﬁc statistic

- 1 1

- 3 -
(8.1) Tn Tn + Vaba B + wty B

where vy, " v(ﬁn) + Op(n_slz), w, = w(ﬁn) + Op(n-3/2). and v(e), w(e)

are functions analytic on a nsighborhood of u. Before proceeding

with an expansion of in’ we state the following approximations:

(8.2) B, = M - 3 y/o(2) + op(n"3’z)

= 3 -3/2
e, =N - znalc(z) + Op(n )
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vhers M, = 22/03(21). N, - zicil(c(z) Et). Substituting (8.2) into
(8.1) yields the following expansion (for the purposes of calculation,

we take o(Z) = 1):

(8.3) T, ={2(0-7@ -2 +ZQ n

-1/2) Y2
n'n

+3 6 -2a2)% 27} 1™h

-1/2

+ An + pii(l - (ﬁn-Zain)n-llz)n-llz

+ Hn/ﬁn -2,y/2n

- - ~ -~ a -1
+M/3-2y-N +28) 2 n

s =1 23 -1 -3/2
+ vzn n =+ uzn B+ Op(n )

~' ~3/2
- Tn +n / Xn

Proposition 5.12 can be used to calculate the cumulants of T':

O(n-3/2)

(8.‘) Kl(rn)

rzti;) = 1 + (38-Ty-9a2+ap-p?/36+72/30642v+60)n ™1+ 0(a”3/2)
k(T = 0™/?)
ko (T.) = (6AHB2/3+18Hap+126-20y-30 420000} + 0(a™¥?) |

Once again, a judicious choice of v and © can reduce the order of

-3/2).

the above cumulants to O(n In fact, choosing
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2
vy =Y /2 + 13Bn/72 - 3/6 - 5\ _[12

2 2
W, = Yy +3a /12 -8 /2+aB /2P /18- 34~ /b 1

where

n
2 -
Ya " Iy 0,500 b Tt /(0% V)

n
4 2
=1 - (Y,-r ¢,) /(nv?) - 3
y {vn?o,rnfO} 121 i "n’t n

2 2,-2
§ =1- I </~
n {1nf0} 1=1 i’"n

yields a pair v = v(p), w = w(p) which reduces the above cumulant

expressions (8.4) to 0(n~3/2),

(8.5) THEOREM (1) Suppose that BC[T,[* + [< ") <o for an1 k.
Then,

RE(T) = [ £0y) o(r)dy + ola D) , for all £ ¢ Ca(R).

6. 16
(11) 1f 3(1: +7,°) (=, and 1f (Y,,5) satisfies tbe

density assumptions (5.10) (111) or (iv), then
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KT, < x} = a(x) + o(a )
uniformly in =x.

Proof. We apply Theorems 4.8(1ii) and 4.16 to %; (note that now
fourth moments of (Yn,tn) must be included in Un)' The
perturbation y, of (8.3) is & Taylor series remainder similar to
that found in (7.2). Ome then argues as in the proof of Theorem 7.4

for Tp.

It is interesting to examine the situation when sampling from

(Y 1 and Y

{ 1 is normally disfributed. In this

1,11), where <

case,

. 3 -3/2
t. - (tn+tn)/lm + Op(n )

>
»

This, up a term of order Op(u-3/2

), is the Hotelling-Frankel
transformation, which was derived in {15]. This transformation was
designed as a device to transform a Student t-variate with n-1
degrees of freedoms into a r.v. with a "more” normal distribution.
Theorem 8.5 thus shows that in is the nonparametric analogue of :hé
Hotelling-Frankel transformation.

Theorem 8.5 has important consequences for confidence interval
estimation. In particular, under agsumption (8.5) (i1), the result
proves that all the coverage errors (one-sided and two-sided) for
intervals based on %n are o(n 1) uniforaly in p. Thus, the

transformation (8.1) improves coverage rates, as well as corrects for

asymmetry effects.
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9. Numerical Results

In this section, we report the results of a Monte Carlo study of
the coverage characteristics of "normal quantile” confidence intervals

bagsed on the pivots tn’ Tn’ and Tn’

(9.1) EXAMPLE. Choose <ty = 1 and let Y, have an exponential
distribution ceantered at 0 (i.e., P{Y; > y} = exp(-(y+l1)) for

¥y > =1). This example was studied in [9].

(9.2) EXAMPLE. - Let <5 = 1, and suppose Y, has a chi-square
distribution with !0 degrees of freedom. This example, as well as

(9.1), was considered in [19].

(9.3) EXAMPLE, Llet {Wn; n > 1} be the sequence of consecutivé
customer waiting times in an M/M/1 queue with arrival intensity A = 5
and service intensity y = 10. The process {(Wp} 1s then a Markov
chain which takes on the value O infinitely often. Returns to 0
constitute regeneration times for (W,} and thus a sequence

((Yi,Ti)) of appropriate regenerative pairs can be constructed, with
a goal of estimating EW, the stationary waiting time. See Iglehart

(1971) for more details on this process.

(9.4) EXAMPLE. Let {Bg; t > 0} be the busy-time process obtained
from the M/M/1 queue of Example 9.3; i.e., By 18 1 or O depending
on whether or not the server is busy at time t. This process

regenerates itself at those instants at which a customer arrives to
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find a free server. Based on this sequence of regeneration times, a
confideyce_interval for the long-run proportion of time that the
gerver is busy can be derived, yilelding a sequence {(Yi.ti)} of
regenerative pairs.

For Examples 9.1 and 9.2, 2500 replications of the sampling
experiment were created; for Examples 9.3 and 9.4, 1000 replications.
Pseudo-random numbers were obtained from the Learmounth-Lewis raandom
number generator (see LEARMONTH and LEWIS (1973) for a description).
The goal was to estimate P{¢n £ 2(0.05)}, P{é, > 2(0.95)} and
P(2(0.05) < ¢_ < 2(0.95)) for ¢ =t , T, and T .

Note that both Tn and Eﬁ are non-linear in the parameter r.
Thus In order to determine 100(1-z)Z confidence interval boundaries
based on these statistics, the zeros of some non-linear equations

must be found. Specifically, in the case of fn’ one first considers

the cubic polynomial

1/2 + x(1 + a n-l) + xz Pa n-llz + x3 W 2l

(9.5) fn(x) =6, n n

Given some fixed ¢ > 0, one then finds solutions x,(i) satisfying

fn(xn(i)) = z, such that |z, - x (1)| < ¢, for z; = z(ptl-a),

z, = z(p). Let En be the event that such solutions exist uniquely,

vith x (1) > x (2). on {v >0, ;n # 0}, set

L =r, - v},’zuznxnu) + Q1) 2(p+1-a))/ (a2 7))
(9.6) a -
R (p) = r - vi2a x (2 + (1) (/Y23 .

n u
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(9.7) FROPOSITION. (1) If K(T." + 1:“) <o, then 1-KE)
-k/2

= «n ).
(11) Under assumption (1i) of Theorem 8.5, the error asymptotics
of [in(p), in(p)] are o(n_l), uniformly in p.

(i) 1r Kr + <) <o, then B ()L () = R (D)L (PO

Proof. Because' of the continuity of xn, Voo P and v, in Uu,
there exists § such that lﬁn-u.l < § 1implies all four estimators

are within n of their limits. Hence, lﬁn-pl < & implies that

Ifn(x)-x| <Kn n-llz

(9.8) -
|00 - 1| <kxn a2
for some K, uniformly in x on [zi-e. zi+e]. Thus, for n
sufficiently large, £ 13 monotone on [zi-:. zi-l-e]. with
fn(z:'fe)--z1 > €/2, and tn(zi-e) -z < -¢/2, provided ll-ln-pl < §.
So, B 2 (lﬁn-pl <8} for n sufficiently and hence 1 - P(Bn)
<RUT-w > 8) € 0 %)  (aee (4.18)), provided E(Toa) < =
Relation (9.8) also proves (iii), with the assistance ~f the strong
law of large numbers. For ({i), we use the fact that Theorem 4.8
allows the Hy's to be defined arbitrarily outside a neighborhood of

be 1
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For the pivots Tn and Tn’ a different approach is more

#
attractive. Observe that the exponential pivots T: and Tne

defined by
1/2 20_t
e n nn -1/2
9.9) T, = 1{%*0}(——29n (exp(——7-—nl )~ D+e n )

+ 1{%_0)&n +6 )

T:e defined similarly) satisfy T: = Tn + Op(n-l), Tze - T: + op(n-l).
The pivots T: and T:° are monotone in the parameter r, thereby
avoiding some of the complicationg inherent in using Tn or %n' An
argument based on Theorem 4.16 proves that confidence intervals based
on T: or t:‘ enjoy the same error asymptotics as those for Tn or
T:, up to order o(n~1/z).

It should be noted, however, that the coverage estimates in
Exanples 9.1 through 9.4 were computed using the estimators tn’ Tn’
and in explicitly. 1In other words, because the value of r was
known for each of the examples, the three pivots were explicitly
calculated to determine which of the intervals I1 = (-=, 2(0.05)],
12- (2¢(0.0S8), 2(0.95)]), and 13 = [2(0.95, ») covered the pivots. In
practice, of course, one would have to explicitly calculate the
confidence interval boundaries. For the pivot ih, this would require
finding roots of the cubic f£,(x), and substituting into (9.6).

Given the fact that fn(x) -x + Op(n-llz), Newton's method for
root-solving should be quite well-behaved, and hence the numerical

difficulties involved in solving (9.5) should not be too significant.
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Table 1 displays the results for the exponential and chi-square
examples. Table 2 illustrates the behavior of the pivots for the
M/M/1 queueing process examples. It should be pointed out that
for the »W, Pprocess, {(Yn,tn)} does not satisfy assumptions (111) or
(iv) of Theorem (5.10), since t, is a lattice r.v. in this case.
However, it can be shown that the other three examples do satisfy the
conditions of Theorem 5.10.

Note that Examples 9.1 through 9.3 appear to confirm the error
asymptotics of Sections 6, 7, and 8. The pivot T, tends to
"balance” the one-sided co;erage probabilities, moving them towards
their correct values of 0.05. This confirms the asymmetry correction
induced by the Johnson pivotal trgnsformation. The pivot in. goes
one step further: It seems to deal reasounably well with the overall
confidence interval coverage rate. In Example 9.4, all three néthods
do well. Such an outcome is not surprising, in light of the fact that

the sanple skewvness §, for a sample size of 1000, was only 0.0l. '
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TABLE 1
Exponential Chi-square
2500 replications 2500 replications
Sample
Size Pivot Coverage Rates Coverage Rates
I Ia I3 I Iy 13
t 0.210 0,758  0.032 | 0.134 0.812  0.054
5 T 0.173  0.793  0.034 | 0.120 0.823  0.057
ia 0.166  0.784  0.050 | 0.122 0.813  0.065
£ 0.154 0.820 0.026 | 0.092 0.866  0.042
10 T 0.106 0.851  0.043 | 0.079  0.871  0.050
in 0.082  0.874  0.044 | 0.069 0.883  0.048
t 0,136  0.838  0.026 | 0.085 0.872  0.043
15 T, 0.096 0.860 0.044 | 0.068 0.878  0.054
in 0.061  0.897 0.042 | 0.060 0.890  0.050
£, 0.121  0.855  0.024 | 0.076  0.883  0.041
20 T 0.088  0.870  0.042 | 0.059 0.885  0.056
in 0.053  0.908 0.039 | 0.048  0.901  0.051
£ 0.113  0.864 0.023 | 0.072  0.890  0.038
25 T 0.075 0.881  0.044 | 0.058 0.888  0.054
in 0.040  0.925  0.035 | 0.052  0.902  0.046
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TABLE 2

Waiting Times Hn
1000 replications

Busy Time Bt
1000 replications

% Sample

| Size ' Pivot Coverage Rates Coverage Rates

\ I Iz I3 I 12 I3
e 0.333  0.649  0.018 | 0.081  0.884  0.035

40 T 0.201  0.756  0.043 | 0.049  0.896  0.055
T 0.065  0.802  0.133 | 0.049  0.898  0.053
£ 0.256  0.726  0.018 | 0.067  0.893  0.040
80 T, 0.176  0.787  0.037 | 0.046  0.895  0.059

T 0.025  0.891  0.084 | 0.062  0.901  0.0S7

) £, 0.242  0.741  0.017 | 0.060  0.883  0.049

] 120 T, 0.148  0.809  0.043 | 0.052 0.889  0.058

] T 0.020 0.910 0.070 | 0.052  0.889  0.059

i

; t 0.219  0.767  0.014 | 0.372  0.878  0.050

s 160 T 0.131  0.833  0.036 | 0.053 0.286  0.06i

P -

1 T 0,018  0.937  0.045 | 0.054 0.885  0.061

:

3

: t 0.194  0.792  0.014 | 0.065 0.887  0.048

3 200 T, 0.117  0.846  0.037 | 0.050 0.888  0.062

2 T, 0.016  0.948  0.036 | 0.051 0.888  0.061

s
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TABLE 2 (cont'd)

Waiting Times "n
1000 replications

Busy Time Bt
1000 replications

Sample

Size Pivot Coverage Rates Coverage Rates
I I, I3 1, I, I3
£, 0.166 0.818 0.018 | 0.053 0.892  0.055
400 T, 0.095 0.858  0.047 | 0.043  0.892  0.065
in 0.019  0.954  0.027 | 0.043 0.891  0.066
t 0.126  0.852  0.024 | 0.047  0.897  0.056
800 T 0.075  0.873  0.052 | 0.041  0.894  0.065
in 0.027 0.945 0.028 | 0.041  0.895 0.064
t, 0.121  0.844  0.035 | 0.057 0.882  0.061
1200 T 0.091 0.850 0.059 | 0.053 0.880  0.067
in 0.038  0.926 0.036 | 0.052 0.881  0.067
£ 0.108  0.857 0.035 | 0.049  0.890  0.061
1600 T 0.076  0.861 0.063 | 0.044 0.886  0.070
in 0.037  0.926  0.039 | 0.06464 0.885  0.071
£ 0.103 0.859 0.038 | 0.048 0.893  0.059
2000 T, 0.073  0.858  0.069 | 0.043 0.892  0.065
in 0.0446  0.911  0.045 | 0.043  0.892  0.065
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